VII. Constructing Plasmodium berghei gene targeting vectors using recombineering

by: Claudia Pfander, Burcu Bronner-Anar, Gareth Girling, Ellen S C Bushell, Frank Schwach, Julian C Rayner, Oliver Billker
Sanger Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
e-mail: ellen.bushell@sanger.ac.uk

1. Background

This protocol describes a restriction-ligation free method for engineering AT-rich Plasmodium DNA using the Red/ET recombination system of bacteriophage lambda (Zhang et al., 1998; Wang et al. 2006). We here use this method to generate vectors for gene knock-out and 3' tagging in Plasmodium berghei (Pfander et al. 2011). However, individual modules of the protocol can be combined and extended to generate more complex genetic modification and complementation vectors, even for large P. berghei genes. Recombineered vectors have two significant advantages over standard genetic modification constructs: 1) They are produced without PCR-based amplification of Plasmodium DNA (AT-rich and highly error-prone), and 2) they display an increased recombination frequency in P. berghei due to the augmented length of their homology arms of typically 6-10 kb.

This protocol uses clones from an arrayed large-insert library of (PbG) P. berghei genomic DNA, available from the Wellcome Trust Sanger Institute. The library has been endsequenced and mapped, so individual library clones carrying a given gene of interest (GOI) can be identified and retrieved from frozen stocks. These clones are then converted into genetic modification vectors by using a combination of Red/ET recombineering and Gateway technology. Figure 1 outlines the steps involved. The PbG library currently contains >9000 clones, allowing for the design of knockout (ko) and c-terminal tagging vectors for $>90 \%$ of all P. berghei predicted open reading frames. For PbG library clones and reagents contact plasmogem@sanger.ac.uk.

Figure 1. Schematic overview of the generation of P. berghei gene targeting vectors using recombineering. The strategy shown is that employed for targeted disruption. For c-terminal tagging the selection marker is inserted directly downstream of the gene of interest, replacing the stop codon. (A) Schematic of the pJAZZ vector showing hairpin telomers (black), telomerase gene ($T e / M$), replication factor and origin (repA), and kanamycin resistance gene $\left(\operatorname{kan}^{R}\right)$. The P.
berghei genomic DNA insert carries the gene of interest (GOI). (B) The GOI is replaced by a bacterial selection (zeo-pheS) cassette by recombineering facilitated by 50 bp homology regions flanking the GOI, and present on a PCR product carrying the zeo-pheS cassette. (C) An in vitro Gateway (GW) reaction step exchanges the zeo-pheS marker for the P. berghei hdhfr/yfcu selection cassette, as mediated by the attR sites associated with the zeo-pheS marker, and attL sites flanking the hdhfr/yfcu cassette. (D) The completed gene targeting vector is prepared prior to P. berghei transfection by Notl digestion, which releases the modified P. berghei insert from the flanking vector sequences. (E) Following transfection, the gene targeting vector facilitates the modification the P. berghei genome by integration at the GOI through double homologous recombination.

2. Methodology summary:

A. Electroporation of pSC101gbaA plasmid and subsequent induction of recombineering competency proteins from this plasmid.
B. Electroporation of PCR product carrying the zeo-pheS bacterial selection cassette flanked by attR Gateway sites and 50 bp P. berghei homology regions. Recombination between homologous sequences is facilitated by the recombineering competency proteins, resulting in the replacement of the GOI with the zeo-pheS cassette, and generation of an intermediate vector (here denoted PbG zeo-pheS).
C. In vitro Gateway reaction using the pR6K attL1-3xHA-hdhfr-yfcu-attL2 (Pfander et al. 2011) as a donor plasmid. Exchange between attR sites on the PbG zeo-pheS intermediate vector and attL sites on the pR6K attL1-3xHA-hdhfr-yfcu-attL2 donor mediates the replacement of zeo-pheS with the Plasmodium positive negative selective marker hdhfr/yfcu (Braks et al. 2006).
3. Reagents and equipment

Electroporation events are performed using the Gene Pulser Xcell (Bio-Rad) or BTX ECM 630 (Harvard Scientific), and 1 mm electroporation cuvettes (Bio-Rad).

A. Selective media and agar

	Final conc.	Stock conc.	Solvent
Kanamycin	$30 \mu \mathrm{~g} / \mathrm{ml}$	$10 \mathrm{mg} / \mathrm{ml}$	$\mathrm{dH}_{2} \mathrm{O}$
Tetracycline	$5 \mu \mathrm{gl}$	$5 \mathrm{mg} / \mathrm{ml}$	ethanol
Zeocin (Source	BioScience) $50 \mu \mathrm{~g} / \mathrm{ml}$	$10 \mathrm{mg} / \mathrm{ml}$	dH2O

Terrific broth (TB): For 1 L TB use 11.8 g Bacto-tryptone, 23.6 g yeast extract, 9.4 g dipotassium hydrogen phosphate (anhydrous) and 2.2 g potassium dihydrogen phosphate (anhydrous), supplemented with 0.4% glycerol after autoclaving.

YEG-Cl kanamycin plates: Per $1 \mathrm{~L} \mathrm{dH}_{2} \mathrm{O}$, add 5 g Yeast Extract, $5 \mathrm{~g} \mathrm{NaCl}, 2 \mathrm{~g} 4$-chloro-DL-phenylalanine and 15 g agar and autoclave. Allow to cool to $<55^{\circ} \mathrm{C}$, add 0.4% (v/v) sterile glucose and kanamycin.

Protocol Update: zeocin and kanamycin plates: Per $1 \mathrm{~L} \mathrm{dH}_{2} \mathrm{O}$, add 5 g yeast extract, 5 g NaCl and 15 g agar and autoclave. Allow to cool to $<55^{\circ} \mathrm{C}$ and add zeocin and kanamycin.

B. Miscellaneous reagents

10\% L-arabinose, sterile filtered.
Gateway LR Clonase enzyme (Invitrogen), (kit contains buffer and Proteinase K).

BigEasy-TSA Electrocompetent Cells (SOLOS), (Lucigen).
$100 \mu \mathrm{M}$ pore filters for DNA dialysis (Millipore).
Sterile HPLC-grade $\mathrm{H}_{2} \mathrm{O}$ is used throughout the protocol.
MilliQ ultrapure $\mathrm{H}_{2} \mathrm{O}$ used for media.
Qiaprep Spin Mini Prep Kit (Qiagen).
PCR reagents: Proof-reading polymerase (e.g. Advantage 2 polymerase, Clontech). 2xGoTaq Green master mix (Promega), screening polymerase.
Dpnl restriction enzyme.

C. Plasmids

PbG clones: PbG is a P. berghei ANKA clone 15cy1 genomic DNA library. The library was constructed using the pJAZZ-OK blunt low copy (five per cell) vector from Lucigen (Ravin et al. 2003, Godinska et al. 2010). These clones and their derivatives can only be propagated in TSA E.coli (ampicillin ${ }^{R}$, Lucigen). This vector confers kanamycin resistance.
pSC101gbdA: This plasmid encodes recombination and proofreading activities from lambda phage and recA. This vector converts any E. coli strain into a competent strain for Red/ET recombination (Wang et al. 2006) and confers tetracycline resistance. The pSC101 origin of replication restricts replication of this plasmid to $30^{\circ} \mathrm{C}$. In contrast, $37^{\circ} \mathrm{C}$ is non-permissive. L-arabinose induction and temperature switching together tightly regulate Red/ET protein expression.
pR6K attR1-zeo-pheS-attR2: The template for the PCR reaction amplifying the zeo-pheS selection marker with flanking attR1 and attR2 sites for Gateway recombination. This vector confers tetracycline resistance and can only be replicated in pir ${ }^{+}$E.coli.
pR6K attL1-3xHA-hdhfr-yfcu-attL2: The Gateway donor plasmid that facilitates the replacement of the zeo-pheS marker with the hdhfr-yfcu casette. This plasmid is available with different flavour tags for c-terminal addition of GFP or 3xHA tags; other tagging vectors are in development. This vector confers tetracycline resistance and can only be replicated in pir $^{+} E$. coli.

D. Primers

Primer sequences are available from http://plasmogem.sanger.ac.uk.
Primers for amplification of the zeo-pheS selection cassette: Primers contain 50 bp of sequence specific for GOI , followed by 20 bp annealing to the selection cassette.

Primer R1: 50 bp homology region specific for GOI + 5'-aaggcgcataacgataccac-3' Primer R2: 50 bp homology region specific for GOI (Reverse complement) + 5'-ccgcctactgcgactataga-3'

Primers for amplification of the wt GOI allele: Primers are designed to span the insertion site for the zeo-pheS alternatively, hdhfr-yfcu cassette. Prior to starting, the primer combination below can be used to confirm the presence of the GOI in the PbG clone used as starting material.

QCR1: 20 bp primer annealing within the modified or deleted GOI QCR2: 20 bp primer annealing outside modified or deleted GOI

Primers for assessment of successful integration of selection cassettes into PbG clone, when used in combination with the gene specific QCR2 primer:
zeo-pheS cassette: ZeoR2 5'-tcattcttcgaaaacgatct-3'
hdhfr-yfcu cassette: GW2 5'-ctttggtgacagatactac-3'

Protocol

Day 0. Start PbG clone culture
0.1 Inoculate PbG clone from glycerol stock into 4.0 ml TB-kanamycin.
0.2 Grow overnight at $37^{\circ} \mathrm{C}$, shaking at $\sim 250 \mathrm{rpm}$.

Day 1. Transformation of recombinase plasmid pSC101gbdA
Before start, chill $\mathrm{H}_{2} \mathrm{O}$ and electroporation cuvettes on ice and cool centrifuge to $4^{\circ} \mathrm{C}$.
1.1 Dilute overnight cultures to an OD_{600} of 0.05 , in 4 ml TB-kanamycin.
1.2 Resume shaking at $\mathbf{3 7}{ }^{\circ} \mathbf{C}$ until OD_{600} reaches $0.6-0.8$ (check OD_{600} after 2 hours).
1.3 During incubation:
a. Set up zeo-pheS cassette PCR with gene specific homology arms (1.12).
b. Dilute pSC 101 gbdA plasmid to 10 ng of plasmid in $50 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. Keep on ice.
1.4 When at an OD_{600} of $0.6-0.8$, place the tube with the culture on ice for 15 min . Keep cells cold from this point onwards.
1.5 Transfer 1.4 ml of culture to 1.5 ml centrifuge tube. Discard the rest of the culture.
1.6 Spin for 3 min at $5,000 \mathrm{~g}$ at $4^{\circ} \mathrm{C}$.
1.7 Make cells electrocompetent by sequential washes in ice cold HPLC-grade $\mathrm{H}_{2} \mathrm{O}$:
1.7.1 Carefully aspirate supernatant
1.7.2 Wash the cell pellet in 1 ml ice cold $\mathrm{H}_{2} \mathrm{O}$.
1.7.3 Spin 3 min at $5,000 \mathrm{~g}$ in a cold microfuge.
1.7.4 Repeat 2 more washes (step 1.7.1-1.7.3) with 1 ml ice cold $\mathrm{H}_{2} \mathrm{O}$.

The cell pellet becomes looser with each wash. Make sure cells are drained well after final wash.
1.8 Keeping the tube on ice, re-suspend cell pellet in $50 \mu \mathrm{l}$ of diluted pSC101-gbdA plasmid, and transfer to a chilled 1 mm gap-width electroporation cuvette.
1.9 Electroporate bacteria:
1.9.1 Settings: BTXECM 630 electroporator ($1800 \mathrm{~V}, 25 \mu \mathrm{~F}, 200 \Omega$), or Bio-Rad Gene Pulser Xcell ($1800 \mathrm{~V}, 10 \mu \mathrm{~F}, 600 \Omega$).
1.9.2 Immediately add $950 \mu \mathrm{l}$ of TB, and transfer cells to a 14 ml culture tube.
1.10 Allow cells to recover at $\mathbf{3 0 ^ { \circ }} \mathbf{C}$, shaking at 225 rpm for 70 min . Total volume at this stage is 1 ml .
DO NOT CULTURE AT $37^{\circ} \mathrm{C}$ AT THIS STAGE.
1.11 Add 3 ml TB supplemented with kanamycin and tetracycline (final concentration; $30 \mu \mathrm{~g} / \mathrm{ml}$ kan and $5 \mu \mathrm{~g} / \mathrm{ml}$ tet), incubate o $/ \mathrm{n}$ at $30^{\circ} \mathrm{C}$ shaking.
DO NOT CULTURE AT $37^{\circ} \mathrm{C}$ AT THIS STAGE.
1.12 PCR amplification of zeo-pheS cassette with homology arm extensions for recombineering:
1.12.1 PCR reaction
$\mathrm{H}_{2} \mathrm{O} \quad 15.5 \mu \mathrm{l}$
pR6K attR1-zeo-pheS-attR2 plasmid template(12 ng/ $\mu \mathrm{l}$) $1.0 \mu \mathrm{l}$
10x PCR buffer
$2.5 \mu \mathrm{l}$
Primers R1 and R2 ($2 \mu \mathrm{M}$), each
$2.5 \mu \mathrm{l}$
dNTPs (10 mM each)
$0.5 \mu \mathrm{l}$
AdvantageTaq2 (Clontech), or other proof-reading Taq polymerase $0.5 \mu \mathrm{l}$
$95^{\circ} \mathrm{C} 5^{\prime} / / 95^{\circ} \mathrm{C} 30^{\prime \prime} / 58^{\circ} \mathrm{C} 30^{\prime \prime} / 72^{\circ} \mathrm{C} 1^{\prime} 30^{\prime \prime}(x 30) / / 72^{\circ} \mathrm{C} 10^{\prime} / / 4^{\circ} \mathrm{C}$ hold
1.12.2 Visualise $2.5 \mu \mathrm{l}$ of PCR product by gel electrophoresis. Expected size is 2.0 kb.
1.12.3 Digest the rest of the PCR reaction with $1 \mu \mathrm{l}$ of Dpnl (stock $20 \mathrm{U} / \mu \mathrm{l}$) at $37^{\circ} \mathrm{C}$ for 1 h . This is done to eliminate template plasmid before transformation.
1.12.4 Dialyse PCR product against HPLC-grade $\mathrm{H}_{2} \mathrm{O}$ ($0.1 \mu \mathrm{M}$ pore filters, Millipore) for 1 h .
1.12.5 Transfer dialysed product from the filter to an Eppendorf tube, quantify DNA by spectrophotometry and store at $-20^{\circ} \mathrm{C}$.

Day 2. Transformation of zeo-pheS bacterial selection cassette (recombineering) Before start, chill $\mathrm{H}_{2} \mathrm{O}$ and electroporation cuvettes on ice and cool bench top centrifuge to $4^{\circ} \mathrm{C}$.
2.1 Dilute overnight cultures to an OD_{600} of 0.05 , in 4 ml TB with kanamycin and tetracycline.
2.2 Resume shaking at $30^{\circ} \mathrm{C}$ until OD_{600} reaches 0.3-0.4 (check OD_{600} after 2 h). DO NOT CULTURE AT $37^{\circ} \mathrm{C}$ AT THIS STAGE.
2.3 During incubation:
2.3.1 Prepare attR1-zeo-pheS-attR2 PCR product for transformation by diluting $250 \mathrm{ng}-1 \mu \mathrm{~g}$ of purified PCR product in $50 \mu \mathrm{l}$ of cold $\mathrm{ddH}_{2} \mathrm{O}$.
2.4 At $\mathrm{OD}_{600}=0.3-0.4$, add $80 \mu \mathrm{l} 10 \%$ L-arabinose (0.2% final concentration) and incubate:
2.4.1 In water bath for 5 min at $\mathbf{3 7}{ }^{\circ} \mathbf{C}$.
2.4.2 In shaking incubator for 35 min at $37^{\circ} \mathbf{C}$.
2.5 Chill tube on ice for 15 min . Keep cells cold from this point onwards.
2.6 Transfer 1.4 ml of culture to 1.5 ml centrifuge tube. Discard the rest of the culture.
2.7 Spin for 3 min at $5,000 \mathrm{~g}$ at $4^{\circ} \mathrm{C}$.
2.8 Make cells electrocompetent by sequential washes in ice cold HPLC-grade $\mathrm{H}_{2} \mathrm{O}$ as outlined in step 1.7.
2.9 Keeping the cells on ice, re-suspend cells in $50 \mu \mathrm{l}$ of diluted attR1-zeo-pheSattR2 PCR product, and transfer to a chilled 1 mm gap-width electroporation cuvette.
2.10 Electroporate cells as outlined in step 1.9.
2.11 Allow cells to recover at $37^{\circ} \mathrm{C}$, shaking for 70 min . Total volume at this stage is 1 ml .
2.12 Add 3 ml of TB supplemented with zeocin (final concentration $50 \mu \mathrm{~g} / \mathrm{ml}$) and incubate o/n at $37^{\circ} \mathrm{C}$ shaking. Protocol Update: Select using zeocin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and kanamycin $30 \mu \mathrm{~g} / \mathrm{ml}$.

Important note. One of the strengths of recombineering is its high efficiency, which allows selection to take place through serial liquid culture. However, transformations can be plated out at this stage to allow for screening of single colonies. This ensures that only successfully recombineered clones are taken forward to the next step. This approach may be favoured when first establishing the protocol in your lab, or when a particular construct proves difficult to generate.

Single colony screening is thus not routinely necessary, but if it is the preferred method, after step 2.11; first remove $100 \mu \mathrm{l}$ culture and keep to one side. Spin remaining culture volume for 2 minutes at 6000 rpm , remove $\sim 800 \mu \mathrm{l}$ of the supernatant and then re-suspend cells in the remaining 100 1 . Spread the two dilutions of cells onto prewarmed zeocin and kanamycin agar plates, incubate o/n at $37^{\circ} \mathrm{C}$, then screen individual
colonies by PCR (as outlined in step 3.3) for successful insertion of the zeo-pheS cassette. Single zeo-pheS positive colonies can then be grown in 2 ml TB-zeocinkanamycin and the protocol resumed at step 3.1.

Day 3. Gateway mediated replacement of zeo-pheS selection cassette with hdhfr-yfcu marker
3.1 Use the Qiaprep Spin Mini Prep Kit (Qiagen) according to manufacturer's instructions to isolate the intermediate vector containing zeo-pheS. Use 2 ml culture volume and double P1, P2, N3 buffer volumes to account for growth in rich TB medium. Elute in 50μ of TE pH 8.0.
3.2 Quantify DNA and visualise PbG zeo-pheS intermediate vector by gel electrophoresis. A single, or two very closely migrating, band(s) of $>12 \mathrm{~kb}$ should be present.
3.3 Verify the recombineering reaction by PCR:

3.3.1 PCR reaction

$\mathrm{H}_{2} \mathrm{O}$
$6.5 \mu \mathrm{l}$
Template (plasmid DNA)
$1.0 \mu \mathrm{l}$
2xGoTaq Green master mix
$12.5 \mu \mathrm{l}$
Primer QC2 (Gene specific), ($2 \mu \mathrm{M}$)
$2.5 \mu \mathrm{l}$
Primer ZeoR2 (Generic), ($2 \mu \mathrm{M}$)
$2.5 \mu \mathrm{l}$ $95^{\circ} \mathrm{C} 5^{\prime} / / 95^{\circ} \mathrm{C} 30^{\prime \prime} / 50^{\circ} \mathrm{C} 30^{\prime \prime} / 68^{\circ} \mathrm{C} 1^{\prime}(x 30) / / 68^{\circ} \mathrm{C} 10^{\prime} / / 4^{\circ} \mathrm{C}$ hold
3.3.2 Visualise $10 \mu \mathrm{l}$ of PCR product by gel electrophoresis. The resulting PCR product should migrate as a single band of $\sim 400-800 \mathrm{bp}$.
3.4 Set up the Gateway LR Clonase reaction in a thin-walled PCR tube:

PbG zeo-pheS intermediate vector ($\sim 30 \mathrm{ng} / \mu \mathrm{l}) \quad 10.00 \mu \mathrm{l}$
pR6K attL1-3xHA-hdhfr/yfcu-attL2 (100 ng/ $\mu \mathrm{l}$) $1.00 \mu \mathrm{l}$
LR clonase buffer 5X $4.00 \mu \mathrm{l}$
LR clonase enzyme mix $\quad 2.00 \mu \mathrm{l}$
TE $\quad 3.00 \mu \mathrm{l}$
3.5 Incubate the Gateway mixture o / n at $25^{\circ} \mathrm{C}$ in a PCR machine using heated lid function.

Day 4. Transformation of Gateway product
4.1 Add $0.5 \mu \mathrm{l}$ of proteinase K to inactivate Gateway reaction and incubate at $37^{\circ} \mathrm{C}$ for 10 min.
4.2 Dialyse the Gateway product as described in step 1.12.4.
4.3 Transform 5-10 μ l of dialysed Gateway product into $50 \mu \mathrm{l}$ BigEasy-TSA electrocompetent cells, as described in step 1.9.
4.4 Allow cells to recover at $37^{\circ} \mathbf{C}$, shaking for 70 min . The volume at this stage is 1 ml .
4.5 Remove $100 \mu \mathrm{l}$ culture, and keep to one side.
4.6 Transfer remaining culture volume to 1.5 ml Eppendorf tubes.
4.7 Spin remaining culture volume for 2 minutes at 6000 rpm , remove $\sim 800 \mu \mathrm{l}$ of the supernatant, and re-suspend cells in the remaining $100 \mu \mathrm{l}$ culture medium.
4.8 Spread the two dilutions of cells onto pre-warmed YEG-Cl kanamycin agar plates.
4.9 Incubate plates overnight at $37^{\circ} \mathbf{C}$.

Day 5. PCR based screening for Gateway hdhfr-yfcu positive PbG clones
5.1 Pick >4 colonies and perform colony PCR to verify the Gateway reaction:
5.1.1 Pick single colonies and inoculate 4 ml TB-kanamycin and $10 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}$:
5.1.1.1 Grow inoculated selective medium o/n at $37^{\circ} \mathrm{C}$ for glycerol stocks.
5.1.1.2 Boil $10 \mu \mathrm{l}$ colony lysate for 10 min at $95^{\circ} \mathrm{C}$.

5.1.2

PCR Reaction
$\mathrm{H}_{2} \mathrm{O} \quad 5.0 \mu \mathrm{l}$

Template(colony lysate)
$2.5 \mu \mathrm{l}$
2xGoTaq Green master mix
Primer QC2 (gene specific), ($2 \mu \mathrm{M}$)
$12.5 \mu \mathrm{l}$
$2.5 \mu \mathrm{l}$
Primer GW2 (generic), ($2 \mu \mathrm{M}$)
$2.5 \mu \mathrm{l}$
$95^{\circ} \mathrm{C} 5^{\prime} / / 95^{\circ} \mathrm{C} 30^{\prime \prime} / 50^{\circ} \mathrm{C} 30^{\prime \prime} / 68^{\circ} \mathrm{C} 1^{\prime}(x 30) / / 68^{\circ} \mathrm{C} 10^{\prime} / / 4^{\circ} \mathrm{C}$ hold
Important note. Verified clones can be prepared for P. berghei transfection by growing medium or large scale cultures in TB supplemented with kanamycin. Qiagen Midi or Maxi prep kit can then be used to purify the DNA (using double buffer volumes as described in step 3.1). Prior to transfection, the entire P. berghei genomic DNA fragment, which contains the modified GOI and acts as the targeting vector, is released by Notl digestion. P. berghei transfections are performed using 1-5 $\mu \mathrm{g}$ Notl digested DNA, purified by standard ethanol precipitation. There is no need to purify the insert away from the pJazz flanking arms that are also released by Notl digestion.

References

- Braks JA, Franke-Fayard B, Kroeze H, Janse CJ, Waters AP (2006) Development and application of a positive-negative selectable marker system for use in reverse genetics in Plasmodium. Nucleic Acids Res 14, 34-35.
- Godiska, R.et al. (2010) Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli. NAR38, e88.
- Pfander, C., Anar, B., Schwach, F., Otto, T.D., Brochet, M., Volkmann, K., Quail, M.A., Pain, A., Rosen, B., Skarnes, W.C., Rayner, J.C., and Billker, O. A scalable pipeline for highly effective genetic modification of a malaria parasite. Nature Methods Volume 8, 1078-1082.
- Ravin, N. V., Kuprianov, V. V., Gilcrease, E. B. \&Casjens, S. R. (2003) Bidirectional replication from an internal ori site of the linear N15 plasmid prophage. NAR31, 65526560.
- Wang, J.et al. (2006) An improved recombineering approach by adding RecA to lambda Red recombination. Mol. Biotech.32, 43-53.
- Zhang, Y., Buchholz, F., Muyrers, J. P. \& Stewart, A. F. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nature Genetics 20, 123-128.

